A globally convergent method based on Fischer–Burmeister operators for solving second-order cone constrained variational inequality problems
نویسندگان
چکیده
منابع مشابه
Neural networks for solving second-order cone constrained variational inequality problem
In this paper, we consider using the neural networks to efficiently solve the second-order cone constrained variational inequality (SOCCVI) problem. More specifically, two kinds of neural networks are proposed to deal with the Karush-Kuhn-Tucker (KKT) conditions of the SOCCVI problem. The first neural network uses the FischerBurmeister (FB) function to achieve an unconstrained minimization whic...
متن کاملA Note on a Globally Convergent Newton Method for Solving Monotone Variational Inequalities
R esum e. Il est bien connu que la m ethode de Newton, lorsqu'appliqu ee a un probl eme d'in equation variationnelle fortement monotone, converge localement vers la solution de l'in equation, et que l'ordre de convergence est quadratique. Dans cet article nous mon-trons que la direction de Newton constitue une direction de descente pour un objectif non dii erentiable et non convexe, et ceci m^ ...
متن کاملA Globally Convergent Numerical Method for Some Coefficient Inverse Problems with Resulting Second Order Elliptic Equations
A new globally convergent numerical method is developed for some multidimensional Coefficient Inverse Problems for hyperbolic and parabolic PDEs with applications in acoustics, electromagnetics and optical medical imaging. On each iterative step the Dirichlet boundary value problem for a second order elliptic equation is solved. The global convergence is rigorously proven and numerical experime...
متن کاملA Hybrid Newton Method for Solving Box Constrained Variational Inequality Problems via the D-gap Function
A box constrained variational inequality problem can be reformulated as an unconstrained minimization problem through the D-gap function. A hybrid Newton-type method is proposed for minimizing the D-gap function. Under suitable conditions, the algorithm is shown to be globally convergent and locally quadratically convergent. Some numerical results are also presented.
متن کاملSolving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2009
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2009.07.084